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We propose a strongly secure certificateless signature scheme supporting batch verification, which makes it possible for a verifier
to verify a set of signatures more efficiently than verifying them one by one. In an identity-based digital signature scheme, private
key generator (PKG) knows each user’s signing key, so it can generate a signature which is indistinguishable from the signature
generated by the user. This is a serious problem because the property of signature nonrepudiation will not be achieved. In our
proposed scheme, it is impossible for PKG to produce a signature which is indistinguishable from any signature produced by a
user. Compared with existing signature schemes with batch verification, although our proposed scheme is not the most efficient
one, it achieves Girault’s level-3 security, while the others have Girault’s level-1 or level-2 security only. We also formally prove that
the proposed scheme is unforgeable and satisfies Girault’s level-3 security based on hard problems.

1. Introduction

In traditional certificate-based public-key cryptosystems, a
user’s public key is produced and is not related to her/his
identity. Therefore, the key needs to be certificated by some
certification authority (CA) with respect to the user’s identity.
Anyone who wants to use the public key must verify the
validity of the corresponding certificate for the key first.
Considering implementation, the management of public key
certificates requires a large amount of computation cost and
storage.

To reduce the cost of certificate management, Shamir [1]
proposed identity based public key cryptography (ID-PKC)
in 1984. In ID-PKC, a user’s public key can be an arbitrary
bit string which can represent the user’s identity, such as
her/his email address or telephone number. And the user’s
corresponding private key is computed by a trusted party,
called private key generator (PKG) [2].

An inherent problem of ID-PKC is the key escrow
problem. That is, the private key of a user is known to
PKG. PKG can act as any user to decrypt any ciphertext or
generate a signature on any message. To solve this problem,

Al-Riyami and Paterson [3] proposed certificateless public
key cryptography (CL-PKC) in 2003. In CL-PKC, a user’s
secret key is a combination of the secret key, computed by
PKG using its master secret key, and a user-chosen secret.
Thus, PKG cannot know the complete secret key of the user.

In 2003, a certificateless public-key signature scheme [3]
was proposed, but it suffered from the key replacement attack
[4]. After that, several certificateless signature schemes [5–18]
were introduced recently. In 2007, Hu et al. [19] proposed a
new security model and an improved generic construction
for certificateless signatures. It showed that certificateless
signatures should satisfy the property of Girault’s level-3
security [20]. If a certificateless signature scheme meets the
above property, the framework of CL-PKC will be with the
same security level as that of the traditional certificate-based
public key cryptosystems.

In 1989, batch cryptography was first introduced by Fiat
[21]. In a signature scheme with batch verification, the cost
for verifying 𝑛 signatures is less than verifying them one by
one. After [21], some results [22–24] about batch verification
based on RSA or DLP have been proposed. In 2004, Yoon
et al. proposed an ID-based signature scheme with batch
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verification [25], but their security proof does not meet the
definition of batch verification [26]. After that, some ID-
based and group signature schemes with batch verification
were proposed in [27–34], respectively, but only [29] is a
certificateless signature scheme. Besides, the randomization
technique [26, 35–39] for the security of signatures with batch
verification was introduced. The technique can withstand
the attack that an attacker cheats a verifier to accept invalid
signatures.

In this paper, we will design a certificateless signature
scheme with efficient batch verification. The computation
cost of our scheme in batch verification is only three pairings
and it is independent of the number of individual signatures
which will be verified. Furthermore, our scheme satisfies
Girault’s level-3 security. Compared to certificateless, ID-
based, and group signature schemes with batch verification
[7, 11, 14, 16, 27–34], our scheme achieves Girault’s level-3
security, while [27–34] meet Girault’s level-1 security and [7,
11, 14, 16, 29] satisfy Girault’s level-2 security only. Compared
to [5, 13], which also achieve Girault’s level-3 security, our
scheme is more efficient in verification because of the batch
property.

The rest of this paper is organized as follows. In Section 2,
we introduce some preliminaries about mathematical back-
grounds and definitions. In Section 3, we present the pro-
posed scheme. In Section 4, we provide formal security
proofs for our scheme. We compare the proposed scheme
with [5, 7, 11, 13, 14, 16, 27–34] in Section 5. Finally, a
concluding remark is given in Section 6.

2. Preliminaries

In this section, we review the properties of bilinear groups
and some related hard problems.

Let 𝐺
1
and 𝐺

2
be two cyclic groups of prime order 𝑞. Let

𝑃 be a randomly chosen generator of𝐺
1
and let 𝑒 be a bilinear

mapping such that 𝑒: 𝐺
1
× 𝐺
1
→ 𝐺

2
, which satisfies the

following properties.

(1) Bilinearity: for all 𝑃,𝑄, 𝑅 ∈ 𝐺
1
, 𝑒(𝑃 + 𝑄, 𝑅) =

𝑒(𝑃, 𝑅)𝑒(𝑄, 𝑅) and 𝑒(𝑃, 𝑄 + 𝑅) = 𝑒(𝑃, 𝑄)𝑒(𝑃, 𝑅).

(2) Nondegeneracy: there exists 𝑃,𝑄 ∈ 𝐺
1
such that

𝑒(𝑃, 𝑄) ̸= 1.

(3) Computability: there exists an efficient algorithm to
compute 𝑒(𝑃, 𝑄) for any 𝑃,𝑄 ∈ 𝐺

1
.

Definition 1 (batch verification of signatures [35]). Let 𝑙 be
the security parameter. Suppose that (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛, 𝑉𝑒𝑟𝑖𝑓𝑦)
is a signature scheme, 𝑛 ∈ polynomial(𝑙), and
(𝑝𝑘
1
, 𝑠𝑘
1
), . . . , (𝑝𝑘

𝑛
, 𝑠𝑘
𝑛
) are generated independently

according to 𝐺𝑒𝑛(1𝑙) where 𝑝𝑘
𝑖
and 𝑠𝑘

𝑖
are a user 𝑖’s public

key and secret key, respectively. Then, we call probabilistic
𝐵𝑎𝑡𝑐ℎ a batch verification algorithm when the following
conditions hold.

(i) If 𝑉𝑒𝑟𝑖𝑓𝑦(𝜎
𝑖
, 𝑚
𝑖
, 𝑝𝑘
𝑖
) = 1 for all 𝑖 ∈ [1, 𝑛], then

𝐵𝑎𝑡𝑐ℎ((𝜎
1
, 𝑚
1
, 𝑝𝑘
1
), . . . , (𝜎

𝑛
, 𝑚
𝑛
, 𝑝𝑘
𝑛
)) = 1 where 𝑚

𝑖

and 𝜎
𝑖
are a message and a signature, respectively.

(ii) If 𝑉𝑒𝑟𝑖𝑓𝑦(𝜎
𝑖
, 𝑚
𝑖
, 𝑝𝑘
𝑖
) = 0 for some 𝑖 ∈ [1, 𝑛],

then𝐵𝑎𝑡𝑐ℎ((𝜎
1
, 𝑚
1
, 𝑝𝑘
1
), . . . , (𝜎

𝑛
, 𝑚
𝑛
, 𝑝𝑘
𝑛
)) = 1 with

probability negligible in 𝑘, taken over the random-
ness of 𝐵𝑎𝑡𝑐ℎ.

Definition 2 (a certificateless signature scheme with batch
verification). A certificateless signature scheme with batch
verification consists of the following algorithms.

(i) 𝑆𝑒𝑡𝑢𝑝: PKG randomly chooses a secret key and
computes the public key 𝑇pub by using the secret key.
Then, it publishes 𝑇pub and other system parameters.

(ii) 𝐾𝑒𝑦𝐺𝑒𝑛: a user 𝐼𝐷
𝑖
first randomly chooses a secret

key 𝑥
𝑖
, computes corresponding public key 𝑃

𝑖
and

then sends 𝑃
𝑖
to PKG. After receiving 𝑃

𝑖
, PKG outputs

a partial private key 𝐷
𝑖
to a legal user with identity

𝐼𝐷
𝑖
.

(iii) 𝑆𝑖𝑔𝑛𝑖𝑛𝑔(𝑃
𝑖
, 𝐷
𝑖
, 𝑥
𝑖
, 𝑚): this algorithm gets a user’s pub-

lic key 𝑃
𝑖
, the user’s partial private key 𝐷

𝑖
, the user’s

secret key 𝑥
𝑖
, and a message 𝑚 and then it outputs a

signature 𝜎 on𝑚.
(iv) 𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑔(𝜎,𝑚, 𝐼𝐷

𝑖
, 𝑃
𝑖
) : this algorithm gets a signa-

ture 𝜎 on a message 𝑚, a signer’s identity 𝐼𝐷
𝑖
, and a

signer’s public key 𝑃
𝑖
. It then outputs True or False.

(v) 𝐵𝑎𝑡𝑐ℎ 𝑉𝑒𝑟𝑖𝑓𝑦((𝜎
1
,𝑚
1
, 𝐼𝐷
1
, 𝑃
1
), . . . , (𝜎

𝑛
, 𝑚
𝑛
, 𝐼𝐷
𝑛
, 𝑃
𝑛
)):

this algorithm gets 𝑛 signatures 𝜎
1
, . . . , 𝜎

𝑛
onmessage

𝑚
1
, . . . , 𝑚

𝑛
, the signers’ identities 𝐼𝐷

1
, . . . , 𝐼𝐷

𝑛
, and

the signers’ public keys 𝑃
1
, . . . , 𝑃

𝑛
, respectively. This

algorithm outputs True or False.

Definition 3 (Girault’s security [19, 20]). Girault proposed
three security levels to classify the levels of trust to PKG.The
three levels are described as follows.

(i) Level 1: PKG knows the secret of any user.
(ii) Level 2: PKG cannot find out all the information of

a user’s secret. However, PKG can generate a con-
tradictory public key (or a contradictory certificate)
and impersonate the user to generate signatures with
respect to the contradictory public key.

(iii) Level 3: PKG cannot find out all the information of a
user’s secret nor generate a contradictory public key.
PKG can only generate a valid public key (or a valid
certificate).

Definition 4 (the computational Diffie-Hellman (CDH) prob-
lem). Let 𝐺

1
be a cyclic group of order 𝑞 and let 𝑃 be a

generator of 𝐺
1
. Given ⟨𝐺

1
, 𝑞, 𝑃, 𝑎𝑃, 𝑏𝑃⟩ for some 𝑎, 𝑏 ∈ 𝑍∗

𝑞
,

compute 𝑎𝑏𝑃.

3. Our Proposed Scheme

In this section, we propose an efficient certificateless signa-
ture scheme with batch verification based on [15]. 𝐺

1
is an

additive group and 𝐺
2
is a multiplicative group. Let 𝐺

1
and

𝐺
2
be two cyclic groups of prime order 𝑞. Let𝑃 be a randomly

chosen generator of 𝐺
1
and 𝑒 a bilinear mapping such that
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𝑒 : 𝐺
1
× 𝐺
1
→ 𝐺
2
. The details of our scheme are described

as follows.

Setup. PKG performs the following operations.

(1) Choose an integer 𝜆 ∈ 𝑍∗
𝑞
and 𝜃 ∈ {0, 1}∗ randomly,

and set 𝑇pub = 𝜆𝑃.

(2) Choose four cryptographic one-way hash functions,
𝐻
0
: {0, 1}

∗
→ 𝐺
1
, 𝐻
1
: 𝐺
1
→ 𝐺
1
, 𝐻
2
: {0, 1}

∗
×

𝐺
1
× 𝐺
1
→ 𝑍
∗

𝑞
, 𝐻
3
: {0, 1}

∗
× 𝐺
1
× 𝐺
1
→ 𝑍
∗

𝑞
, and

𝐻
4
: {0, 1}

∗
→ 𝐺
1
.

(3) Publish the system parameters {𝐺
1
, 𝐺
2
, 𝑒, 𝑞, 𝑃, 𝜃, 𝑇pub,

𝐻
0
, 𝐻
1
, 𝐻
2
, 𝐻
3
, 𝐻
4
} and keep the master key 𝜆 secret.

Key Generating Phase

(1) A user with identity 𝐼𝐷
𝑖
randomly chooses 𝑥

𝑖
∈ 𝑍
∗

𝑞

and computes 𝑃
𝑖
= 𝑥
𝑖
𝑃, where 𝑥

𝑖
and 𝑃
𝑖
are called the

secret key and the public key, respectively, of user 𝐼𝐷
𝑖
.

(2) The user sends (𝐼𝐷
𝑖
, 𝑃
𝑖
) to PKG.

(3) PKG gets 𝑄
𝑖
= 𝐻
0
(𝐼𝐷
𝑖
) and Γ

𝑖
= 𝐻
1
(𝑃
𝑖
).

(4) PKG computes 𝐷
𝑖0
= 𝜆𝑄

𝑖
and 𝐷

𝑖1
= 𝜆Γ

𝑖
and

sends (𝐷
𝑖0
, 𝐷
𝑖1
) to the user via a secret channel. The

pair (𝐷
𝑖0
, 𝐷
𝑖1
) is called the partial private key of user

𝐼𝐷
𝑖
. The private key of user 𝐼𝐷

𝑖
consists of 𝑥

𝑖
and

(𝐷
𝑖0
, 𝐷
𝑖1
).

Signing Phase. Assume that a signer 𝐼𝐷
𝑖
wants to sign a

message𝑚 ∈ {0, 1}∗. The signer does the following works.

(1) Choose 𝑟 and 𝛼 ∈ 𝑍∗
𝑞
randomly.

(2) Compute 𝑈
1
= 𝑟(𝑄

𝑖
+ Γ
𝑖
) and 𝑈

2
= 𝛼𝑥
𝑖
𝑃.

(3) Compute ℎ
2
= 𝐻
2
(𝑚,𝑈
1
, 𝑈
2
), ℎ
3
= 𝐻
3
(𝑚,𝑈
2
, 𝑈
1
),

and𝑊 = 𝐻
4
(𝜃).

(4) Compute 𝑉 = (𝑟 + ℎ
2
)(𝐷
𝑖0
+ 𝐷
𝑖1
) + (𝛼 + ℎ

3
)𝑥
𝑖
𝑊.

(5) The signature on𝑚 is 𝜎 = (𝑉,𝑈
1
, 𝑈
2
, 𝑃
𝑖
).

Verifying Phase. To verify a signature (𝑉, 𝑈
1
, 𝑈
2
, 𝑃
𝑖
) on mes-

sage𝑚, a verifier should do the following works.

(1) Compute 𝑄
𝑖
= 𝐻

0
(𝐼𝐷
𝑖
), Γ
𝑖
= 𝐻

1
(𝑃
𝑖
), ℎ
2
=

𝐻
2
(𝑚,𝑈
1
, 𝑈
2
), ℎ
3
= 𝐻
3
(𝑚,𝑈
2
, 𝑈
1
), and𝑊 = 𝐻

4
(𝜃).

(2) Verify if 𝑒(𝑃, 𝑉) = 𝑒(𝑇pub, 𝑈1 + ℎ2(𝑄𝑖 + Γ𝑖))𝑒(𝑊,𝑈2 +
ℎ
3
𝑃
𝑖
).

If it is true, the verifier accepts the signature; otherwise, the
verifier rejects it.

Batch Verifying Phase. To verify 𝑛 signatures 𝜎
1

=

(𝑉
1
, 𝑈
11
, 𝑈
21
, 𝑃
1
), . . . , 𝜎

𝑛
= (𝑉
𝑛
, 𝑈
1𝑛
, 𝑈
2𝑛
, 𝑃
𝑛
) of the 𝑛 signers

𝐼𝐷
1
, . . . , 𝐼𝐷

𝑛
on message 𝑚

1
, . . . , 𝑚

𝑛
, respectively, a verifier

performs the following works.

(1) Choose 𝑤
1
, . . . , 𝑤

𝑛
∈ 𝑍
∗

𝑞
randomly.

(2) Compute 𝑄
𝑖
= 𝐻
0
(𝐼𝐷
𝑖
), Γ
𝑖
= 𝐻
1
(𝑃
𝑖
), ℎ
2𝑖
= 𝐻
2
(𝑚
𝑖
,

𝑈
1𝑖
, 𝑈
2𝑖
), ℎ
3𝑖
= 𝐻
3
(𝑚
𝑖
, 𝑈
2𝑖
, 𝑈
1𝑖
) for 𝑖 = 1, . . . , 𝑛, and

𝑊 = 𝐻
4
(𝜃).

(3) Verify if 𝑒(𝑃, ∑𝑛
𝑖=1
𝑤
𝑖
𝑉
𝑖
) = 𝑒(𝑇pub, ∑

𝑛

𝑖=1
𝑤
𝑖
𝑈
1𝑖
+

𝑤
𝑖
ℎ
2𝑖
(𝑄
𝑖
+ Γ
𝑖
))𝑒(𝑊,∑

𝑛

𝑖=1
𝑤
𝑖
𝑈
2𝑖
+ 𝑤
𝑖
ℎ
3𝑖
𝑃
𝑖
).

If it is true, the verifier accepts the 𝑛 signatures.

Correctness. Consider

𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑉
𝑖
)

= 𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
((𝑟
𝑖
+ ℎ
2𝑖
) (𝐷
𝑖0
+ 𝐷
𝑖1
)

+ (𝛼
𝑖
+ ℎ
3𝑖
) 𝑥
𝑖
𝑊))

= 𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
(𝑟
𝑖
(𝐷
𝑖0
+ 𝐷
𝑖1
) + ℎ
2𝑖
(𝐷
𝑖0
+ 𝐷
𝑖1
)))

× 𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
(𝛼
𝑖
𝑥
𝑖
𝑊+ ℎ

3𝑖
𝑥
𝑖
𝑊))

= 𝑒(𝜆𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
(𝑟
𝑖
(𝑄
𝑖
+ Γ
𝑖
) + ℎ
2𝑖
(𝑄
𝑖
+ Γ
𝑖
)))

× 𝑒(𝑊,

𝑛

∑

𝑖=1

𝑤
𝑖
(𝛼
𝑖
𝑥
𝑖
𝑃 + ℎ
3𝑖
𝑥
𝑖
𝑃))

= 𝑒(𝑇pub,
𝑛

∑

𝑖=1

𝑤
𝑖
(𝑈
1𝑖
+ ℎ
2𝑖
(𝑄
𝑖
+ Γ
𝑖
)))

× 𝑒(𝑊,

𝑛

∑

𝑖=1

𝑤
𝑖
(𝑈
2𝑖
+ ℎ
3𝑖
𝑃
𝑖
)) .

(1)

4. Security Models and Formal Proofs

4.1. SecurityModels. A simulator𝐵 simulates an environment
such that an adversary𝐸 can query signatures from𝐵. If𝐸 can
forge a signature, 𝐵 can use the output from 𝐸 to solve a hard
problem.

We classify adversary 𝐸 into three types. The adversary
of type I cannot access the master secret key and query the
partial private key of target ID. The adversary of type II can
access the master secret key but cannot query target ID’s
secret key nor replace her/his public key. The adversary of
type III is to simulate the environment for the proof of that
a user cannot produce a signature with a new public-secret
key pair, which is different from his own one, without the
corresponding partial private key generated from the master
secret key.

We define the capability of 𝐸 which can be captured by
the following queries.
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(i) 𝐻
0
(𝐼𝐷
𝑖
): if 𝐸 inputs a user’s identity 𝐼𝐷

𝑖
to𝐻
0
, 𝐵 will

output a randomly chosen𝑄
𝑖
∈ 𝐺
1
as the user’s public

key.
(ii) 𝐻

1
(𝑃
𝑖
): when 𝐸 inputs a public key 𝑃

𝑖
∈ 𝐺
1
to 𝐻
1
, 𝐵

outputs a randomly chosen Γ
𝑖
∈ 𝐺
1
.

(iii) 𝐻
2
(𝑚,𝑈
1
, 𝑈
2
): if 𝐸 inputs a message 𝑚 ∈ {0, 1}

∗

and 𝑈
1
, 𝑈
2
∈ 𝐺
1
, 𝐵 will output an integer randomly

chosen in 𝑍∗
𝑞
.

(iv) 𝐻
3
(𝑚,𝑈
2
, 𝑈
1
): if𝐸 inputs amessage 𝑚 ∈ {0, 1}∗,𝑈

2
∈

𝐺
1
, and𝑈

1
∈ 𝐺
1
,𝐵will output a random integer in𝑍∗

𝑞
.

(v) 𝐻
4
(󰜚): if 𝐸 inputs a string 󰜚 ∈ {0, 1}∗, 𝐵 will output an

element randomly chosen in 𝐺
1
.

(vi) 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑖
): if 𝐸 inputs a user’s identity, 𝐼𝐷

𝑖
,

then 𝐵 will output the user’s public key 𝑃
𝑖
.

(vii) 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦(𝐼𝐷
𝑖
, 𝑃
𝑖
): if 𝐸 inputs a user’s

identity 𝐼𝐷
𝑖
and the user’s public key 𝑃

𝑖
, 𝐵 will output

the partial private key (𝐷
𝑖0
, 𝐷
𝑖1
).

(viii) 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦(𝐼𝐷
𝑖
): if 𝐸 inputs a user’s identity, 𝐼𝐷

𝑖
, 𝐵

will output the secret key 𝑥
𝑖
of user 𝐼𝐷

𝑖
to 𝐸.

(ix) 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝐼𝐷
𝑖
, 𝑃
󸀠

𝑖
): when 𝐸 inputs a

user’s identity 𝐼𝐷
𝑖
and the user’s new public key 𝑃󸀠

𝑖
, 𝐵

will replace𝑃
𝑖
with𝑃󸀠

𝑖
.The new partial private key can

be obtained by querying 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦(𝐼𝐷
𝑖
).

(x) 𝑆𝑖𝑔𝑛(𝐼𝐷
𝑖
, 𝑚): if 𝐸 inputs a user’s identity 𝐼𝐷

𝑖
and a

message 𝑚, 𝐵 will output a user 𝐼𝐷
𝑖
’s signature 𝜎 on

𝑚 to 𝐸.

Definition 5 (the CDH assumption). We say that the (𝑡, 𝜀)-
CDH assumption holds in 𝐺

1
if no polynomial-time algo-

rithmwithin running time 𝑡 can solve the CDHproblemwith
probability at least 𝜀.

Definition 6 (the unforgeability game I). Let 𝐸
1

be a
polynomial-time attacker of type I. 𝐸

1
interacts with a

challenger 𝐵 in the following game.

(i) Step 1: 𝐵 runs the setup algorithm of a certificateless
signature scheme with batch verification. 𝐵 publishes
the public parameters.

(ii) Step 2: 𝐸
1
queries 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦,

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦, 𝑆𝑖𝑔𝑛, 𝐻
0
, 𝐻
1
,

𝐻
2
,𝐻
3
, and𝐻

4
in an arbitrary sequence.

(iii) Step 3: 𝐸
1

outputs 𝑛 signatures 𝜎
1
, . . . , 𝜎

𝑛
on

𝑚
1
, . . . , 𝑚

𝑛
corresponding to the signers 𝐼𝐷

1
, . . . , 𝐼𝐷

𝑛

with the public keys 𝑃
1
, . . . , 𝑃

𝑛
, respectively.

𝐸
1
wins the game if

(1) 𝐵𝑎𝑡𝑐ℎ 𝑉𝑒𝑟𝑖𝑓𝑦((𝜎
1
, 𝑚
1
, 𝐼𝐷
1
, 𝑃
1
), . . . , (𝜎

𝑛
, 𝑚
𝑛
, 𝐼𝐷
𝑛
, 𝑃
𝑛
))

= True;
(2) there exists 𝜎

𝑦
∈ {𝜎
1
, . . . , 𝜎

𝑛
}whose (𝐼𝐷

𝑦
, 𝑚
𝑦
) has not

been queried to 𝑆𝑖𝑔𝑛 oracle;
(3) 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦(𝐼𝐷

𝑦
, 𝑃
𝑦
) has never been

queried.

The scheme is (𝑡, 𝜀, I)-unforgeable if no polynomial-
time attacker 𝐸

1
, with running time at most 𝑡, can win the

unforgeability game I with probability at least 𝜀.

Definition 7 (the unforgeability game II). Let 𝐸
2

be a
polynomial-time attacker of type II. 𝐸

2
interacts with a

challenger 𝐵 in the following game.

(i) Step 1: 𝐵 runs the setup algorithm of a certificateless
signature scheme with batch verification. 𝐵 publishes
the public parameters and sends themaster secret key
to 𝐸
2
.

(ii) Step 2: 𝐸
2
queries 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦,

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦, 𝑆𝑖𝑔𝑛, 𝐻
0
, 𝐻
1
,

𝐻
2
,𝐻
3
, and𝐻

4
in an arbitrary sequence.

(iii) Step 3: 𝐸
2

outputs 𝑛 signatures 𝜎
1
, . . . , 𝜎

𝑛
on

𝑚
1
, . . . , 𝑚

𝑛
corresponding to the signers 𝐼𝐷

1
, . . . , 𝐼𝐷

𝑛

with the public keys 𝑃
1
, . . . , 𝑃

𝑛
, respectively.

𝐸
2
wins the game if

(1) 𝐵𝑎𝑡𝑐ℎ 𝑉𝑒𝑟𝑖𝑓𝑦((𝜎
1
, 𝑚
1
, 𝐼𝐷
1
, 𝑃
1
), . . . , (𝜎

𝑛
, 𝑚
𝑛
, 𝐼𝐷
𝑛
, 𝑃
𝑛
))

= True;
(2) there exists 𝜎

𝑦
∈ {𝜎
1
, . . . , 𝜎

𝑛
}whose (𝐼𝐷

𝑦
, 𝑚
𝑦
) has not

been queried to 𝑆𝑖𝑔𝑛 oracle;
(3) Neither 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦(𝐼𝐷

𝑦
) nor 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒-

𝑚𝑒𝑛𝑡(𝐼𝐷
𝑦
, ⋅, ⋅) has been queried.

The scheme is (𝑡, 𝜀, II)-unforgeable if no polynomial-
time attacker 𝐸

2
, with running time at most 𝑡, can win the

unforgeability game II with probability at least 𝜀.

Definition 8 (the unforgeability game III [19]). Let 𝐸
3
be

a polynomial-time attacker of type III. 𝐸
3
interacts with a

challenger 𝐵 in the following game.

(I) Step 1: 𝐵 runs the setup algorithm of a certificateless
signature scheme with batch verification. 𝐵 publishes
the public parameters.

(II) Step 2: 𝐸
3
queries 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦,

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦, 𝐻
0
, 𝐻
1
, 𝐻
2
,

𝐻
3
, and𝐻

4
in an arbitrary sequence.

(III) Step 3: 𝐸
3
outputs a signature 𝜎∗ = (𝑉∗, 𝑈∗

1
, 𝑈
∗

2
, 𝑃
∗

𝑦
)

on a message𝑚∗ for the user 𝐼𝐷
𝑦
.

𝐸
3
wins the game if

(1) 𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑔(𝜎∗, 𝑚∗, 𝐼𝐷
𝑦
, 𝑃
∗

𝑦
) = True;

(2) User 𝐼𝐷
𝑦
has been created, that is, 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷

𝑦
),

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦 (𝐼𝐷
𝑦
, 𝑃
𝑦
), and 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦(𝐼𝐷

𝑦
)

have been queried;
(3) 𝑃∗
𝑦

is different from all of the public keys 𝑃
𝑦
’s

returned by 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑦
) or used to query

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡.

The scheme is (𝑡, 𝜀, III)-unforgeable if no polynomial-
time attacker 𝐸

3
, with running time at most 𝑡, can win the

unforgeability game III with probability at least 𝜀.
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4.2. Formal Proofs. In this section, we will prove that our
scheme is unforgeable based on the CDH assumption.

Lemma 9 (the forking lemma [40]). Let (𝑠, 𝑚, 𝑐) be a valid
signature-message triple of a signature scheme and ℎ the hashed
value of (𝑚, 𝑐) where 𝑚 is a plaintext message, 𝑐 is a string,
and 𝑠 is called the signature part of the triple. Let 𝐴 be a
probabilistic polynomial-time Turningmachine. Given only the
public data of the signature scheme as input, if 𝐴 can find,
with nonnegligible probability, a valid signature-message triple
(𝑠, 𝑚, 𝑐)with ℎ, then, with nonnegligible probability, a replay of
this machine, with the same random tape and a different value
returned by the random oracle, outputs two valid signature-
message triples (𝑠, 𝑚, 𝑐) with ℎ and (𝑠󸀠, 𝑚, 𝑐) with ℎ󸀠 such that
ℎ ̸= ℎ
󸀠.

Lemma 10 (the splitting lemma [40]). Let 𝐴 ⊂ 𝑋 × 𝑌 such
that Pr [(𝑥, 𝑦) ∈ 𝐴] ≥ 𝜀. For any 𝛼 < 𝜀, define 𝐵 = {(𝑥, 𝑦) ∈
𝑋 × 𝑌 | Pr

𝑦
󸀠
∈𝑌
[(𝑥, 𝑦
󸀠
) ∈ 𝐴] ≥ 𝜀 − 𝛼} and then the following

statements hold:

(1) Pr [𝐵] ≥ 𝛼,
(2) ∀(𝑥, 𝑦) ∈ 𝐵, Pr

𝑦
󸀠
∈𝑌
[(𝑥, 𝑦
󸀠
) ∈ 𝐴] ≥ 𝜀 − 𝛼,

(3) Pr [𝐵 | 𝐴] ≥ 𝛼/𝜀.

Theorem 11. Given 𝑛 5-tuples (𝑉
𝑖
, 𝑈
1𝑖
, 𝑈
2𝑖
, 𝑃
𝑖
, 𝑚
𝑖
)’s, if 𝑒(𝑃,

∑
𝑛

𝑖=1
𝑤
𝑖
𝑉
𝑖
) = 𝑒(𝑇

𝑝𝑢𝑏
, ∑
𝑛

𝑖=1
𝑤
𝑖
𝑈
1𝑖
+ 𝑤
𝑖
ℎ
2𝑖
(𝑄
𝑖
+ Γ
𝑖
))𝑒(𝑊,

∑
𝑛

𝑖=1
𝑤
𝑖
𝑈
2𝑖
+ 𝑤
𝑖
ℎ
3𝑖
𝑃
𝑖
) where 𝑤

𝑖
is randomly chosen in 𝑍∗

𝑞
,

ℎ
2𝑖
= 𝐻
2
(𝑚
𝑖
, 𝑈
1𝑖
, 𝑈
2𝑖
), and ℎ

3𝑖
= 𝐻
3
(𝑚
𝑖
, 𝑈
2𝑖
, 𝑈
1𝑖
) for each 𝑖, the

probability of that 𝑒(𝑃, 𝑉
𝑖
) ̸= 𝑒(𝑇pub, 𝑈1𝑖 +ℎ2𝑖(𝑄𝑖+Γ𝑖))𝑒(𝑊,𝑈2𝑖 +

ℎ
3𝑖
𝑃
𝑖
) for some 𝑖 ∈ {1, . . . , 𝑛} is 1/2|𝑞|.

Proof. The proof is based on [35, 37]. If 𝑒(𝑃, 𝑉
𝑖
) ̸= 𝑒(𝑇pub, 𝑈1𝑖 +

ℎ
2𝑖
(𝑄
𝑖
+Γ
𝑖
))𝑒(𝑊,𝑈

2𝑖
+ℎ
3𝑖
𝑃
𝑖
) for some 𝑖, we have that𝑉

𝑖
̸= (𝑟
𝑖
+

ℎ
2𝑖
)(𝜆𝑄
𝑖
+ 𝜆Γ
𝑖
) + (𝛼

𝑖
+ ℎ
3𝑖
)𝑥
𝑖
𝑊 for some 𝑖. Thus, there exists

𝑐
𝑖
̸= 0 (mod 𝑞) such that 𝑉

𝑖
= (𝑟
𝑖
+ ℎ
2𝑖
)(𝜆𝑄
𝑖
+ 𝜆Γ
𝑖
) + (𝛼

𝑖
+

ℎ
3𝑖
)𝑥
𝑖
𝑊+ 𝑐

𝑖
𝑃 for some 𝑖.

Let 𝑉
𝑗
= (𝑟
𝑗
+ ℎ
2𝑗
)(𝜆𝑄
𝑗
+ 𝜆Γ
𝑗
) + (𝛼

𝑗
+ ℎ
3𝑗
)𝑥
𝑗
𝑊+ 𝑐

𝑗
𝑃 and

𝑐
𝑗
∈ {0, 1, . . . , 𝑞 − 1}, ∀𝑗 ∈ {1, . . . , 𝑛} − {𝑖}. As 𝑒(𝑃,∑𝑛

𝑖=1
𝑤
𝑖
𝑉
𝑖
) =

𝑒(𝑇pub, ∑
𝑛

𝑖=1
𝑤
𝑖
𝑈
1𝑖
+ 𝑤
𝑖
ℎ
2𝑖
(𝑄
𝑖
+ Γ
𝑖
))𝑒(𝑊,∑

𝑛

𝑖=1
𝑤
𝑖
𝑈
2𝑖
+ 𝑤
𝑖
ℎ
3𝑖
𝑃
𝑖
),

𝑤
1
𝑐
1
+ 𝑤
2
𝑐
2
+ 𝑤
3
𝑐
3
+ ⋅ ⋅ ⋅ + 𝑤

𝑛
𝑐
𝑛
≡ 0 (mod 𝑞) and thus 𝑤

𝑖
=

𝑐
−1

𝑖
(𝑤
1
𝑐
1
+ 𝑤
2
𝑐
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑖−1
𝑐
𝑖−1
+ 𝑤
𝑖+1
𝑐
𝑖+1
+ ⋅ ⋅ ⋅ + 𝑤

𝑛
𝑐
𝑛
) mod

𝑞. Since 𝑤
𝑖
is randomly chosen in 𝑍∗

𝑞
, the probability of 𝑤

𝑖
=

𝑐
−1

𝑖
(𝑤
1
𝑐
1
+ 𝑤
2
𝑐
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑖−1
𝑐
𝑖−1
+ 𝑤
𝑖+1
𝑐
𝑖+1
+ ⋅ ⋅ ⋅ + 𝑤

𝑛
𝑐
𝑛
)mod 𝑞

is 1/2|𝑞|, which is negligible.

Theorem 12. The proposed scheme is (𝑡, 𝑞
𝑠𝑖𝑔𝑛
, 𝑞
𝑝𝑝𝑘
, 𝑞
𝑠𝑘
, 𝑞
𝑝𝑘𝑟
,

𝑞
𝑝𝑘
, 𝑞
ℎ0
, 𝑞
ℎ1
, 𝑞
ℎ2
, 𝑞
ℎ3
, 𝑞
ℎ4
, 𝜀, I)-unforgeable assuming that the

(𝑡
󸀠
, 𝜀
󸀠
)-CDH assumption holds in 𝐺

1
where 𝜀󸀠 ≥ (𝜀/(2𝑞

ℎ0
))

(1 − 1/2
|𝑞|
)

2

, 𝑡󸀠 ≈ 𝑡 + 𝑞
𝑠𝑖𝑔𝑛

O(𝑡
𝑠𝑖𝑔𝑛
) + 𝑞
𝑝𝑝𝑘

O(𝑡
𝑝𝑝𝑘
) + 𝑞
𝑠𝑘
O(𝑡
𝑠𝑘
) +

𝑞
𝑝𝑘𝑟

O(𝑡
𝑝𝑘𝑟
) + 𝑞
𝑝𝑘
O(𝑡
𝑝𝑘
) + 𝑞
ℎ0
O(𝑡
ℎ0
) + 𝑞
ℎ1
O(𝑡
ℎ1
) + 𝑞
ℎ2
O(𝑡
ℎ2
) +

𝑞
ℎ3
O(𝑡
ℎ3
) + 𝑞
ℎ4
O(𝑡
ℎ4
) + O(1), 𝑞

𝑠𝑖𝑔𝑛
, 𝑞
𝑝𝑝𝑘

, 𝑞
𝑠𝑘
, 𝑞
𝑝𝑘𝑟

, 𝑞
𝑝𝑘
, 𝑞
ℎ0
,

𝑞
ℎ1
, 𝑞
ℎ2
, 𝑞
ℎ3
, and 𝑞

ℎ4
being the numbers of queries to 𝑆𝑖𝑔𝑛,

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦,𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡,
𝑃𝑢𝑏𝑙𝑖c 𝐾𝑒𝑦, 𝐻

0
, 𝐻
1
, 𝐻
2
, 𝐻
3
, and 𝐻

4
, respectively, and 𝑡

𝑠𝑖𝑔𝑛
,

𝑡
𝑝𝑝𝑘

, 𝑡
𝑠𝑘
, 𝑡
𝑝𝑘𝑟

, 𝑡
𝑝𝑘
, 𝑡
ℎ0
, 𝑡
ℎ1
, 𝑡
ℎ2
, 𝑡
ℎ3
, and 𝑡

ℎ4
being the computing

time of the queries to 𝑆𝑖𝑔𝑛, 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦,

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦, 𝐻
0
, 𝐻
1
, 𝐻
2
, 𝐻
3
, and

𝐻
4
, respectively.

Proof. Assume that a polynomial-time attacker 𝐸
1
wins the

game of Definition 6 with probability being at least 𝜀 within
running time 𝑡. A simulator 𝐵 is given an instance of the
CDH problem ⟨𝐺

1
, 𝑞, 𝑃, 𝑎𝑃, 𝑏𝑃⟩, and 𝐵’s goal is to output the

value of 𝑎𝑏𝑃. We will construct 𝐵 which plays the game in
Definition 6 with 𝐸

1
and outputs the value of 𝑎𝑏𝑃.

Setup. 𝐵 sets 𝑇pub = 𝑏𝑃 and chooses 𝜃 ∈ {0, 1}∗ randomly.
Then,𝐵 publishes {𝐺

1
, 𝐺
2
, 𝑒, 𝑞,𝑃, 𝜃,𝑇pub,𝐻0,𝐻1, 𝐻2, 𝐻3,𝐻4}.

𝐵 can respond to the queries from 𝐸
1
as follows.

(i) 𝐻
0
query: 𝐵 constructs a list,𝐻

0
-list, and chooses an

identity 𝐼𝐷
𝜋
randomly. When 𝐸

1
queries 𝐻

0
(𝐼𝐷
𝑖
) to

𝐵,𝐵 checkswhether 𝐼𝐷
𝑖
is in𝐻

0
-list or not. If 𝐼𝐷

𝑖
does

not exist in 𝐻
0
-list, then there are the following two

cases. Case 1: if 𝐼𝐷
𝑖
= 𝐼𝐷
𝜋
, 𝐵 sets 𝑄

𝑖
= 𝑎𝑃 = 𝐻

0
(𝐼𝐷
𝑖
)

and stores (𝐼𝐷
𝑖
, 𝑎𝑃) in𝐻

0
-list. Case 2: if 𝐼𝐷

𝑖
̸= 𝐼𝐷
𝜋
, 𝐵

sets𝑄
𝑖
= 𝑘
𝑖
𝑃 = 𝐻

0
(𝐼𝐷
𝑖
) where 𝑘

𝑖
is randomly chosen

in 𝑍∗
𝑞
and stores (𝐼𝐷

𝑖
, 𝑘
𝑖
𝑃, 𝑘
𝑖
) in 𝐻

0
-list. However, if

𝐼𝐷
𝑖
exists in 𝐻

0
-list, 𝐵 gets its mapping value, 𝑄

𝑖
=

𝑘
𝑖
𝑃 or 𝑎𝑃. Finally, 𝐵 returns 𝑄

𝑖
.

(ii) 𝐻
1
query: 𝐵 constructs a list, 𝐻

1
-list. If 𝐸

1
queries

𝐻
1
(𝑃
𝑖
) to 𝐵 where 𝑃

𝑖
∈ 𝐺
1
, 𝐵 checks whether 𝑃

𝑖

is in 𝐻
1
-list or not. If it does not exist in 𝐻

1
-list, 𝐵

randomly chooses 𝜌
𝑖
∈ 𝑍
∗

𝑞
and records (𝑃

𝑖
, 𝜌
𝑖
𝑃, 𝜌
𝑖
) in

𝐻
1
-list; else, 𝐵 gets its mapping value, 𝜌

𝑖
𝑃, from 𝐻

1
-

list. Then, 𝐵 returns 𝜌
𝑖
𝑃 to 𝐸

1
.

(iii) 𝐻
2

query: 𝐵 constructs 𝐻
2
-list. If 𝐸

1
queries

𝐻
2
(𝑚,𝑈
1
, 𝑈
2
) to 𝐵, 𝐵 checks whether (𝑚,𝑈

1
, 𝑈
2
) is

in𝐻
2
-list or not. If not, 𝐵 randomly chooses ℎ

2
∈ 𝑍
∗

𝑞

and records ((𝑚,𝑈
1
, 𝑈
2
), ℎ
2
) in𝐻

2
-list; else, 𝐵 gets its

mapping value, ℎ
2
, from 𝐻

2
-list. Then, 𝐵 returns ℎ

2

to 𝐸
1
.

(iv) 𝐻
3
query: 𝐵 constructs 𝐻

3
-list. When 𝐸

1
queries

𝐻
3
(𝑚,𝑈
2
, 𝑈
1
) to 𝐵, 𝐵 checks whether (𝑚,𝑈

2
, 𝑈
1
) is in

𝐻
3
-list or not. If not,𝐵 randomly chooses ℎ

3
∈ 𝑍
∗

𝑞
and

records ((𝑚,𝑈
2
, 𝑈
1
), ℎ
3
) in 𝐻

3
-list; otherwise, 𝐵 gets

its mapping value, ℎ
3
, from𝐻

3
-list. Then, 𝐵 responds

ℎ
3
to 𝐸
1
.

(v) 𝐻
4
query:𝐵 constructs𝐻

4
-list. If𝐸

1
queries𝐻

4
with a

string 󰜚 to 𝐵, 𝐵 checks whether 󰜚 is in𝐻
4
-list or not. If

󰜚 does not exist in𝐻
4
-list, then there are the following

two conditions. Condition 1: if 󰜚 = 𝜃,𝐵 sets𝑊 = 𝛽𝑃 =

𝐻
4
(󰜚) where 𝛽 is randomly chosen in 𝑍∗

𝑞
and stores

(󰜚, 𝛽𝑃, 𝛽) in𝐻
4
-list. Condition 2: if 󰜚 ̸= 𝜃, 𝐵 sets𝑊 =

Φ = 𝐻
4
(󰜚) where Φ is randomly chosen in 𝐺

1
and

stores (󰜚, Φ) in𝐻
4
-list. However, if 󰜚 exists in𝐻

4
-list,

𝐵 gets its mapping value, 𝑊 = Φ or 𝛽𝑃. Finally, 𝐵
returns𝑊.

(vi) 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 query: 𝐵 constructs a list, 𝑝𝑘-list. When
𝐸
1
queries 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷

𝑖
) to 𝐵, 𝐵 looks up 𝑝𝑘-list.

If 𝐼𝐷
𝑖
is not found in 𝑝𝑘-list,𝐵 randomly chooses 𝑥

𝑖
∈
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𝑍
∗

𝑞
, computes 𝑃

𝑖
= 𝑥
𝑖
𝑃, and stores (𝐼𝐷

𝑖
, 𝑃
𝑖
, 𝑥
𝑖
) in 𝑝𝑘-

list; otherwise,𝐵 gets𝑃
𝑖
from𝑝𝑘-list. Finally,𝐵 returns

𝑃
𝑖
.

(vii) 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦 query: if 𝐸
1
queries 𝑃𝑎𝑟𝑡𝑖𝑎𝑙

𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦(𝐼𝐷
𝑖
, 𝑃
󸀠

𝑖
) to 𝐵, 𝐵 looks up𝐻

0
-list, 𝑝𝑘-list,

and 𝐻
1
-list. If 𝐼𝐷

𝑖
= 𝐼𝐷
𝜋
, 𝐵 returns “failure.” If 𝐼𝐷

𝑖

is not found in𝐻
0
-list, 𝐵 queries𝐻

0
(𝐼𝐷
𝑖
) and gets 𝑘

𝑖

from𝐻
0
-list; else, 𝐵 retrieves 𝑘

𝑖
from𝐻

0
-list. If 𝐼𝐷

𝑖
is

not in 𝑝𝑘-list, 𝐵 queries 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑖
) and obtains

𝑃
𝑖
; otherwise, 𝐵 catches 𝑃

𝑖
from 𝑝𝑘-list. If 𝑃

𝑖
̸= 𝑃
󸀠

𝑖
, 𝐵

returns “failure.” Then, if 𝑃
𝑖
is not found in𝐻

1
-list, 𝐵

queries𝐻
1
(𝑃
𝑖
) and gets 𝜌

𝑖
; else,𝐵 retrieves 𝜌

𝑖
from𝐻

1
-

list. Finally, 𝐵 returns (𝐷
𝑖0
= 𝑘
𝑖
𝑏𝑃,𝐷
𝑖1
= 𝜌
𝑖
𝑏𝑃).

(viii) 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦 query: if 𝐸
1
queries 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦(𝐼𝐷

𝑖
) to

𝐵, 𝐵 looks up 𝑝𝑘-list. If 𝐼𝐷
𝑖
is not found in 𝑝𝑘-list,

𝐵 queries 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑖
) and gets 𝑥

𝑖
; if there is a

record (𝐼𝐷
𝑖
, 𝑃
𝑖
, 𝑥
𝑖
), then 𝐵 retrieves 𝑥

𝑖
from 𝑝𝑘-list

and returns 𝑥
𝑖
.

(ix) 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 query: when 𝐸
1
queries

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝐼𝐷
𝑖
, 𝑃󸀠
𝑖
) to 𝐵, 𝐵 looks

up 𝑝𝑘-list. If 𝐼𝐷
𝑖
is not found in 𝑝𝑘-list, 𝐵 queries

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑖
). Then, 𝐵 replaces the record

(𝐼𝐷
𝑖
, 𝑃
𝑖
, 𝑥
𝑖
) with (𝐼𝐷

𝑖
, 𝑃
󸀠

𝑖
, ⊥) in 𝑝𝑘-list.

(x) 𝑆𝑖𝑔𝑛 query: when 𝐸
1
queries 𝑆𝑖𝑔𝑛(𝐼𝐷

𝑖
, 𝑚) to 𝐵, if

𝐼𝐷
𝑖
= 𝐼𝐷
𝜋
, 𝐵 does the following works.

(1) Choose 𝑧, 𝛼, and ℎ
2
∈ 𝑍
∗

𝑞
randomly;

(2) compute 𝑈
1
= 𝑧𝑃 − ℎ

2
𝑎𝑃 and 𝑈

2
= 𝛼𝑃;

(3) set𝐻
2
(𝑚,𝑈
1
, 𝑈
2
) = ℎ
2
;

(4) compute ℎ
3
= 𝐻
3
(𝑚,𝑈
2
, 𝑈
1
) and𝑊 = 𝐻

4
(𝜃);

(5) compute 𝑉 = 𝑧𝑏𝑃 + ℎ
2
𝜌
𝑖
𝑏𝑃 + 𝛼𝛽𝑃 + ℎ

3
𝛽𝑃
𝑖
;

(6) form 𝜎 = (𝑉,𝑈
1
, 𝑈
2
, 𝑃
𝑖
).

Thus, the signature on 𝑚 is 𝜎 = (𝑉,𝑈
1
, 𝑈
2
, 𝑃
𝑖
) and it satisfies

the verifying formula in Section 3.
If 𝐼𝐷
𝑖
̸= 𝐼𝐷
𝜋
, 𝐵 can return a signature on𝑚 to 𝐸

1
because

𝐵 can compute all secrets of user I𝐷
𝑖
. Finally, suppose that 𝐸

1

outputs, with probability at least 𝜀, 𝑛 signatures 𝜎
1
, . . . , 𝜎

𝑛
on

𝑚
1
, . . . , 𝑚

𝑛
of the signers 𝐼𝐷

1
, . . . , 𝐼𝐷

𝑛
, respectively, such that

(1) 𝐵𝑎𝑡𝑐ℎ 𝑉𝑒𝑟𝑖𝑓𝑦((𝜎
1
, 𝑚
1
, 𝐼𝐷
1
, 𝑃
1
), . . . , (𝜎

𝑛
, 𝑚
𝑛
, 𝐼𝐷
𝑛
, 𝑃
𝑛
))

= True;

(2) there exists 𝜎
𝑦
∈ {𝜎
1
, . . . , 𝜎

𝑛
} which is not the output

from 𝑆𝑖𝑔𝑛(𝐼𝐷
𝑦
, 𝑚
𝑦
);

(3) 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦(𝐼𝐷
𝑦
, 𝑃
𝑦
) has never been

queried.

From Lemma 9, we fork the sequence of signatures one
time and get 𝜎󸀠

1
, . . . , 𝜎

󸀠

𝑛
on 𝑚
1
, . . . , 𝑚

𝑛
by setting ℎ󸀠

2𝑦
̸= ℎ
2𝑦
.

Thus, we randomly choose 𝑤
𝑖
’s and obtain the following two

equations:

𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑉
𝑖
)

= 𝑒(𝑇pub,
𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
1𝑖
+ 𝑤
𝑖
ℎ
2𝑖
(𝑄
𝑖
+ Γ
𝑖
))

× 𝑒(𝑊,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
2𝑖
+ 𝑤
𝑖
ℎ
3𝑖
𝑃
𝑖
) ,

𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑉
󸀠

𝑖
)

= 𝑒(𝑇pub,
𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
󸀠

1𝑖
+ 𝑤
𝑖
ℎ
󸀠

2𝑖
(𝑄
𝑖
+ Γ
𝑖
))

× 𝑒(𝑊,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
󸀠

2𝑖
+ 𝑤
𝑖
ℎ
󸀠

3𝑖
𝑃
𝑖
)

(2)

with probability being at least 𝜀/2 by Lemma 10, where
𝑉
𝑦
̸= 𝑉
󸀠

𝑦
, 𝑈
1𝑦
= 𝑈
󸀠

1𝑦
, ℎ
2𝑦

̸= ℎ
󸀠

2𝑦
, 𝑈
2𝑦
= 𝑈
󸀠

2𝑦
, and ℎ

3𝑦
= ℎ
󸀠

3𝑦
.

We assume that 𝐼𝐷
𝑦
= 𝐼𝐷
𝜋
. By Theorem 11, we have that

𝑒 (𝑃, 𝑉
𝑦
) = 𝑒 (𝑇pub, 𝑈1𝑦 + ℎ2𝑦 (𝑄𝑦 + Γ𝑦))

× 𝑒 (𝑊,𝑈
2𝑦
+ ℎ
3𝑦
𝑃
𝑦
) ,

𝑒 (𝑃, 𝑉
󸀠

𝑦
) = 𝑒 (𝑇pub, 𝑈1𝑦 + ℎ

󸀠

2𝑦
(𝑄
𝑦
+ Γ
𝑦
))

× 𝑒 (𝑊,𝑈
2𝑦
+ ℎ
3𝑦
𝑃
𝑦
)

(3)

with probability being at least (𝜀/(2𝑞
ℎ0
)) (1−1/2

|𝑞|
)
2.Thus, we

can compute (ℎ
2𝑦
−ℎ
󸀠

2𝑦
)
−1
((𝑉
𝑦
−𝑉
󸀠

𝑦
)−𝜌
𝑦
𝑇pub), which is 𝑎𝑏𝑃, to

solve the CDH problem with 𝜀󸀠 ≥ (𝜀/(2𝑞
ℎ0
))(1 − 1/2

|𝑞|
)
2 and

𝑡
󸀠
≈ 𝑡 + 𝑞signO(𝑡sign) + 𝑞𝑝𝑝𝑘O(𝑡𝑝𝑝𝑘) + 𝑞𝑠𝑘O(𝑡𝑠𝑘) + 𝑞𝑝𝑘𝑟O(𝑡𝑝𝑘𝑟) +

𝑞
𝑝𝑘
O(𝑡
𝑝𝑘
) + 𝑞
ℎ0
O(𝑡
ℎ0
) + 𝑞
ℎ1
O(𝑡
ℎ1
) + 𝑞
ℎ2
O(𝑡
ℎ2
) + 𝑞
ℎ3
O(𝑡
ℎ3
) +

𝑞
ℎ4
O(𝑡
ℎ4
) + O(1).

Theorem 13. The proposed scheme is (𝑡, 𝑞
𝑠𝑖𝑔𝑛
, 𝑞
𝑝𝑝𝑘
, 𝑞
𝑠𝑘
, 𝑞
𝑝𝑘𝑟
,

𝑞
𝑝𝑘
, 𝑞
ℎ0
, 𝑞
ℎ1
, 𝑞
ℎ2
, 𝑞
ℎ3
, 𝑞
ℎ4
, 𝜀, II)-unforgeable assuming that the

(𝑡
󸀠
, 𝜀
󸀠
)-CDH assumption holds in𝐺

1
where 𝜀󸀠 ≥ (𝜀/(2𝑞

𝑝𝑘
))(1−

1/2
|𝑞|
)
2
, 𝑡
󸀠
≈ 𝑡 + 𝑞

𝑠𝑖𝑔𝑛
O(𝑡
𝑠𝑖𝑔𝑛
) + 𝑞
𝑝𝑝𝑘

O(𝑡
𝑝𝑝𝑘
) + 𝑞
𝑠𝑘
O(𝑡
𝑠𝑘
) +

𝑞
𝑝𝑘𝑟

O(𝑡
𝑝𝑘𝑟
) + 𝑞
𝑝𝑘
O(𝑡
𝑝𝑘
) + 𝑞
ℎ0
O(𝑡
ℎ0
) + 𝑞
ℎ1
O(𝑡
ℎ1
) + 𝑞
ℎ2
O(𝑡
ℎ2
) +

𝑞
ℎ3
O(𝑡
ℎ3
) + 𝑞
ℎ4
O(𝑡
ℎ4
) + O(1), 𝑞

𝑠𝑖𝑔𝑛
, 𝑞
𝑝𝑝𝑘

, 𝑞
𝑠𝑘
, 𝑞
𝑝𝑘𝑟

, 𝑞
𝑝𝑘
, 𝑞
ℎ0
,

𝑞
ℎ1
, 𝑞
ℎ2
, 𝑞
ℎ3
, and 𝑞

ℎ4
are the numbers of queries to 𝑆𝑖𝑔𝑛,

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦,𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡,
𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦, 𝐻

0
, 𝐻
1
, 𝐻
2
, 𝐻
3
, and 𝐻

4
, respectively, and 𝑡

𝑠𝑖𝑔𝑛
,

𝑡
𝑝𝑝𝑘

, 𝑡
𝑠𝑘
, 𝑡
𝑝𝑘𝑟

, 𝑡
𝑝𝑘
, 𝑡
ℎ0
, 𝑡
ℎ1
, 𝑡
ℎ2
, 𝑡
ℎ3
, and 𝑡

ℎ4
are the computing

time of the queries to 𝑆𝑖𝑔𝑛, 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦,
𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦, 𝐻

0
, 𝐻
1
, 𝐻
2
, 𝐻
3
, and

𝐻
4
, respectively.

Proof. Assume that a polynomial-time attacker 𝐸
2
wins the

gameofDefinition 7with probability at least 𝜀within running
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time 𝑡. A simulator𝐵 is given an instance of theCDHproblem
⟨𝐺
1
, 𝑞, 𝑃, 𝑎𝑃, 𝑏𝑃⟩, and 𝐵’s goal is to output the value of 𝑎𝑏𝑃.

Wewill construct𝐵which plays the game inDefinition 7with
𝐸
2
and outputs the value of 𝑎𝑏𝑃.

Setup. 𝐵 sets 𝑇pub = 𝜆𝑃 where 𝜆 is randomly chosen in 𝑍∗
𝑞

and chooses 𝜃 ∈ {0, 1}∗ randomly. Then, 𝐵 publishes {𝐺
1
, 𝐺
2
,

𝑒, 𝑞, 𝑃, 𝜃, 𝑇pub,𝐻0,𝐻1, 𝐻2, 𝐻3,𝐻4} and sends 𝜆 to 𝐸
2
. 𝐵 can

respond to the queries from 𝐸
2
as follows.

(i) 𝐻
0
query:𝐵 constructs a list,𝐻

0
-list.When𝐸

2
queries

𝐻
0
(𝐼𝐷
𝑖
) to 𝐵, 𝐵 checks whether 𝐼𝐷

𝑖
is in 𝐻

0
-list or

not. If 𝐼𝐷
𝑖
does not exist in 𝐻

0
-list, 𝐵 sets 𝑄

𝑖
=

𝑘
𝑖
𝑃 = 𝐻

0
(𝐼𝐷
𝑖
) where 𝑘

𝑖
is a random integer in

𝑍
∗

𝑞
and records (𝐼𝐷

𝑖
, 𝑘
𝑖
𝑃, 𝑘
𝑖
) in 𝐻

0
-list; else, 𝐵

gets its mapping value, 𝑘
𝑖
𝑃, from 𝐻

0
-list. Then, 𝐵

returns 𝑄
𝑖
= 𝑘
𝑖
𝑃 to 𝐸

2
.

(ii) 𝐻
4
query: 𝐵 constructs𝐻

4
-list. If 𝐸

2
queries𝐻

4
with

a string 󰜚 to 𝐵, 𝐵 checks whether 󰜚 is in 𝐻
4
-list or

not. If 󰜚 does not exist in 𝐻
4
-list, then there are the

following two conditions. Condition 1: if 󰜚 = 𝜃, 𝐵
sets 𝑊 = 𝑏𝑃 = 𝐻

4
(󰜚) and stores (󰜚, 𝑏𝑃) in 𝐻

4
-list.

Condition 2: if 󰜚 ̸= 𝜃, 𝐵 sets 𝑊 = Φ = 𝐻
4
(󰜚) where

Φ is randomly chosen in 𝐺
1
and stores (󰜚, Φ) in 𝐻

4
-

list. However, if 󰜚 exists in𝐻
4
-list, 𝐵 gets its mapping

value,𝑊 = Φ or 𝑏𝑃. Finally, 𝐵 returns𝑊.

(iii) The simulations for 𝐻
1
, 𝐻
2
, 𝐻
3
, and 𝑃𝑢𝑏𝑙𝑖𝑐

𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 are the same as those in the proof
of Theorem 12

(iv) 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 query: 𝐵 constructs a list, 𝑝𝑘-list, and
chooses an identity 𝐼𝐷

𝜋
randomly. When 𝐸

2
queries

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑖
) to 𝐵, 𝐵 looks up 𝑝𝑘-list. If 𝐼𝐷

𝑖
does

not exist in 𝑝𝑘-list, then there are the following two
conditions. Condition 1: if 𝐼𝐷

𝑖
= 𝐼𝐷

𝜋
, 𝐵 sets 𝑃

𝑖
=

𝑎𝑃 and stores (𝐼𝐷
𝑖
, 𝑎𝑃) in 𝑝𝑘-list. Condition 2: if

𝐼𝐷
𝑖
̸= 𝐼𝐷
𝜋
, 𝐵 sets 𝑃

𝑖
= 𝑥
𝑖
𝑃 where 𝑥

𝑖
is randomly

chosen in 𝑍
∗

𝑞
and stores (𝐼𝐷

𝑖
, 𝑥
𝑖
𝑃, 𝑥
𝑖
) in 𝑝𝑘-list.

However, if 𝐼𝐷
𝑖
exists in 𝑝𝑘-list, 𝐵 gets its mapping

value, 𝑃
𝑖
= 𝑥
𝑖
𝑃 or 𝑎𝑃. Finally, 𝐵 returns 𝑃

𝑖
.

(v) 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦 query: when 𝐸
2

queries
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦(𝐼𝐷

𝑖
, 𝑃
󸀠

𝑖
) to 𝐵, 𝐵 looks up 𝐻

0
-

list, 𝑝𝑘-list, and𝐻
1
-list. If 𝐼𝐷

𝑖
is not found in𝐻

0
-list,

𝐵 queries 𝐻
0
(𝐼𝐷
𝑖
) and gets 𝑘

𝑖
from 𝐻

0
-list; else, 𝐵

retrieves 𝑘
𝑖
from 𝐻

0
-list. If 𝐼𝐷

𝑖
is not in 𝑝𝑘-list, 𝐵

queries 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑖
) and obtains 𝑃

𝑖
; otherwise, 𝐵

catches 𝑃
𝑖
from 𝑝𝑘-list. If 𝑃

𝑖
̸= 𝑃
󸀠

𝑖
, 𝐵 returns “failure.”

Then, if 𝑃
𝑖
is not found in 𝐻

1
-list, 𝐵 queries 𝐻

1
(𝑃
𝑖
)

and gets 𝜌
𝑖
; else, 𝐵 retrieves 𝜌

𝑖
from𝐻

1
-list. Finally, 𝐵

returns (𝐷
𝑖0
= 𝜆𝑘
𝑖
𝑃,𝐷
𝑖1
= 𝜆𝜌
𝑖
𝑃).

(vi) 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦 query: when 𝐸
2
queries 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦(𝐼𝐷

𝑖
)

to 𝐵, 𝐵 looks up 𝑝𝑘-list. If 𝐼𝐷
𝑖
= 𝐼𝐷

𝜋
, 𝐵 returns

“failure.” If 𝐼𝐷
𝑖
is not found in 𝑝𝑘-list, 𝐵 queries

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑖
) and gets 𝑥

𝑖
from 𝑝𝑘-list; else, 𝐵

retrieves 𝑥
𝑖
from 𝑝𝑘-list. Finally, 𝐵 returns 𝑥

𝑖
.

(vii) 𝑆𝑖𝑔𝑛 query: when 𝐸
2
queries 𝑆𝑖𝑔𝑛(𝐼𝐷

𝑖
, 𝑚) to 𝐵, if

𝐼𝐷
𝑖
= 𝐼𝐷
𝜋
, 𝐵 performs the following works.

(1) choose 𝑧, 𝛼, and ℎ
3
∈ 𝑍
∗

𝑞
randomly;

(2) compute 𝑈
1
= 𝑧𝑃 and 𝑈

2
= 𝛼𝑃 − ℎ

3
𝑎𝑃;

(3) compute ℎ
2
= 𝐻
2
(𝑚,𝑈
1
, 𝑈
2
) and𝑊 = 𝐻

4
(𝜃);

(4) set𝐻
3
(𝑚,𝑈
2
, 𝑈
1
) = ℎ
3
;

(5) compute 𝑉 = 𝑧𝜆𝑃 + ℎ
2
𝑘
𝑖
𝜆𝑃 + ℎ

2
𝜌
𝑖
𝜆𝑃 + 𝛼𝑊;

(6) form 𝜎 = (𝑉,𝑈
1
, 𝑈
2
, 𝑃
𝑖
).

Therefore, the signature on 𝑚 is 𝜎 = (𝑉,𝑈
1
, 𝑈
2
, 𝑃
𝑖
) and it

meets the verifying formula in Section 3.
If 𝐼𝐷

𝑖
̸= 𝐼𝐷
𝜋
, 𝐵 can return a signature on 𝑚 to 𝐸

2

since 𝐵 knows all secrets of user 𝐼𝐷
𝑖
. Finally, 𝐸

2
outputs,

with probability being at least 𝜀, 𝑛 signatures 𝜎
1
, . . . , 𝜎

𝑛
on

𝑚
1
, . . . , 𝑚

𝑛
of the signers 𝐼𝐷

1
, . . . , 𝐼𝐷

𝑛
, respectively, such that

(1) 𝐵𝑎𝑡𝑐ℎ 𝑉𝑒𝑟𝑖𝑓𝑦((𝜎
1
, 𝑚
1
, 𝐼𝐷
1
, 𝑃
1
), . . . , (𝜎

𝑛
, 𝑚
𝑛
, 𝐼𝐷
𝑛
, 𝑃
𝑛
))

= True;
(2) there exists 𝜎

𝑦
∈ {𝜎
1
, . . . , 𝜎

𝑛
} which is not the output

from 𝑆𝑖𝑔𝑛(𝐼𝐷
𝑦
, 𝑚
𝑦
);

(3) neither 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦(𝐼𝐷
𝑦
) nor 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒-

𝑚𝑒𝑛𝑡(𝐼𝐷
𝑦
, ⋅, ⋅) has been queried.

From Lemma 9, we fork the sequence of signatures one
time and get 𝜎󸀠

1
, . . . , 𝜎

󸀠

𝑛
on 𝑚
1
, . . . , 𝑚

𝑛
by setting ℎ󸀠

3𝑦
̸= ℎ
3𝑦
.

Thus, we randomly choose 𝑤
𝑖
’s and obtain the following two

equations:

𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑉
𝑖
)

= 𝑒(𝑇pub,
𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
1𝑖
+ 𝑤
𝑖
ℎ
2𝑖
(𝑄
𝑖
+ Γ
𝑖
))

× 𝑒(𝑊,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
2𝑖
+ 𝑤
𝑖
ℎ
3𝑖
𝑃
𝑖
) ,

𝑒(𝑃,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑉
󸀠

𝑖
)

= 𝑒(𝑇pub,
𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
󸀠

1𝑖
+ 𝑤
𝑖
ℎ
󸀠

2𝑖
(𝑄
𝑖
+ Γ
𝑖
))

× 𝑒(𝑊,

𝑛

∑

𝑖=1

𝑤
𝑖
𝑈
󸀠

2𝑖
+ 𝑤
𝑖
ℎ
󸀠

3𝑖
𝑃
𝑖
)

(4)

with probability being at least 𝜀/2 by Lemma 10, where
𝑉
𝑦
̸= 𝑉
󸀠

𝑦
, 𝑈
1𝑦
= 𝑈
󸀠

1𝑦
, ℎ
2𝑦
= ℎ
󸀠

2𝑦
, 𝑈
2𝑦
= 𝑈
󸀠

2𝑦
, and ℎ

3𝑦
̸= ℎ
󸀠

3𝑦
.

We assume that 𝐼𝐷
𝑦
= 𝐼𝐷
𝜋
. By Theorem 11, we have that

𝑒 (𝑃, 𝑉
𝑦
) = 𝑒 (𝑇pub, 𝑈1𝑦 + ℎ2𝑦 (𝑄𝑦 + Γ𝑦))

× 𝑒 (𝑊,𝑈
2𝑦
+ ℎ
3𝑦
𝑃
𝑦
) ,

𝑒 (𝑃, 𝑉
󸀠

𝑦
) = 𝑒 (𝑇pub, 𝑈1𝑦 + ℎ2𝑦 (𝑄𝑦 + Γ𝑦))

× 𝑒 (𝑊,𝑈
2𝑦
+ ℎ
󸀠

3𝑦
𝑃
𝑦
)

(5)
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with probability being at least (𝜀/(2𝑞
𝑝𝑘
))(1 − 1/2

|𝑞|
)
2. Thus,

we can compute (ℎ
3𝑦
− ℎ
󸀠

3𝑦
)
−1
(𝑉
𝑦
− 𝑉
󸀠

𝑦
), which is 𝑎𝑏𝑃, to

solve the CDH problem with 𝜀󸀠 ≥ (𝜀/(2𝑞
𝑝𝑘
))(1 − 1/2

|𝑞|
)
2 and

𝑡
󸀠
≈ 𝑡 + 𝑞signO(𝑡sign) + 𝑞𝑝𝑝𝑘O(𝑡𝑝𝑝𝑘) + 𝑞𝑠𝑘O(𝑡𝑠𝑘) + 𝑞𝑝𝑘𝑟O(𝑡𝑝𝑘𝑟)+

𝑞
𝑝𝑘
O(𝑡
𝑝𝑘
) + 𝑞
ℎ0
O(𝑡
ℎ0
) + 𝑞
ℎ1
O(𝑡
ℎ1
) + 𝑞
ℎ2
O(𝑡
ℎ2
) + 𝑞
ℎ3
O(𝑡
ℎ3
) +

𝑞
ℎ4
O(𝑡
ℎ4
) + O(1).

Theorem 14. The proposed scheme is (𝑡, 𝑞
𝑝𝑝𝑘
, 𝑞
𝑠𝑘
, 𝑞
𝑝𝑘𝑟
, 𝑞
𝑝𝑘
,

𝑞
ℎ0
, 𝑞
ℎ1
, 𝑞
ℎ2
, 𝑞
ℎ3
, 𝑞
ℎ4
, 𝜀, III)-unforgeable assuming that the

(𝑡
󸀠
, 𝜀
󸀠
)-CDH assumption holds in 𝐺

1
with 𝜀󸀠 ≥ 𝜀/(2𝑞

ℎ1−max),

𝑡
󸀠
≈ 𝑡 + 𝑞

𝑝𝑝𝑘
O(𝑡
𝑝𝑝𝑘
) + 𝑞
𝑠𝑘
O(𝑡
𝑠𝑘
) + 𝑞
𝑝𝑘𝑟

O(𝑡
𝑝𝑘𝑟
) + 𝑞
𝑝𝑘
O(𝑡
𝑝𝑘
) +

𝑞
ℎ0
O(𝑡
ℎ0
) + 𝑞
ℎ1
O(𝑡
ℎ1
) + 𝑞
ℎ2
O(𝑡
ℎ2
) + 𝑞
ℎ3
O(𝑡
ℎ3
) + 𝑞

ℎ4
O(𝑡
ℎ4
) +

O(1), (2𝑞
ℎ1−max) being the possibly maximal number of queries

to 𝐻
1
, 𝑞
𝑝𝑝𝑘

, 𝑞
𝑠𝑘
, 𝑞
𝑝𝑘𝑟

, 𝑞
𝑝𝑘
, 𝑞
ℎ0
, 𝑞
ℎ1
, 𝑞
ℎ2
, 𝑞
ℎ3
, and 𝑞

ℎ4
being

the numbers of queries to 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦,
𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦, 𝐻

0
, 𝐻
1
, 𝐻
2
, 𝐻
3
, and

𝐻
4
, respectively, and 𝑡

𝑠𝑖𝑔𝑛
, 𝑡
𝑝𝑝𝑘

, 𝑡
𝑠𝑘
, 𝑡
𝑝𝑘𝑟

, 𝑡
𝑝𝑘
, 𝑡
ℎ0
, 𝑡
ℎ1
, 𝑡
ℎ2
,

𝑡
ℎ3
, and 𝑡

ℎ4
being the computing time of the queries to 𝑆𝑖𝑔𝑛,

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦,𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡,
𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦,𝐻

0
,𝐻
1
,𝐻
2
,𝐻
3
, and𝐻

4
, respectively.

Proof. Assume that a polynomial-time attacker 𝐸
3
wins the

game of Definition 8 with probability being at least 𝜀 within
running time 𝑡. A simulator𝐵 is given an instance of the CDH
problem ⟨𝐺

1
, 𝑞, 𝑃, 𝑎𝑃, 𝑏𝑃⟩, and 𝐵’s goal is to output 𝑎𝑏𝑃. We

will construct 𝐵which plays the game in Definition 8 with 𝐸
3

and outputs 𝑎𝑏𝑃.

Setup. 𝐵 sets 𝑇pub = 𝑏𝑃 and chooses 𝜃 ∈ {0, 1}∗ randomly.
Then,𝐵 publishes {𝐺

1
, 𝐺
2
, 𝑒, 𝑞,𝑃, 𝜃,𝑇pub,𝐻0,𝐻1, 𝐻2, 𝐻3,𝐻4}.

𝐵 can respond to the queries from 𝐸
3
as follows.

The simulation for 𝐻
0
is identical to that in the proof of

Theorem 13. Consider the following.

(i) 𝐻
1
query:𝐵 constructs a list,𝐻

1
-list, and then chooses

𝜋 ∈ {1, . . . , 𝑞
ℎ1−max} at random and sets an index

𝑗 = 0. When 𝐸
3
queries𝐻

1
(𝑃
𝑖
) to 𝐵, 𝐵 checks whether

𝑃
𝑖
is in 𝐻

1
-list or not. If 𝑃

𝑖
does not exist in 𝐻

1
-list,

𝐵 computes 𝑗 = 𝑗 + 1 and there are the following
two cases. Case 1: if 𝑗 = 𝜋, 𝐵 sets 𝐻

1
(𝑃
𝑖
) = 𝑎𝑃

and stores (𝑃
𝑖
, 𝑎𝑃) in 𝐻

1
-list. Case 2: if 𝑗 ̸= 𝜋, 𝐵 sets

𝐻
1
(𝑃
𝑖
) = 𝜌
𝑖
𝑃 where 𝜌

𝑖
is randomly chosen in 𝑍∗

𝑞
and

stores (𝑃
𝑖
, 𝜌
𝑖
𝑃, 𝜌
𝑖
) in𝐻

1
-list. Besides, if 𝑃

𝑖
exists in𝐻

1
-

list, 𝐵 gets its mapping value, 𝜌
𝑖
𝑃 or 𝑎𝑃. Finally, 𝐵

returns 𝜌
𝑖
𝑃 or 𝑎𝑃.

(ii) 𝐻
4
query:𝐵 constructs𝐻

4
-list. If𝐸

3
queries𝐻

4
with a

string 󰜚 to 𝐵, 𝐵 checks whether 󰜚 is in𝐻
4
-list or not. If

󰜚 does not exist in𝐻
4
-list, then there are the following

two conditions. Condition 1: if 󰜚 = 𝜃,𝐵 sets𝑊 = 𝛽𝑃 =

𝐻
4
(󰜚) where 𝛽 is randomly chosen in 𝑍∗

𝑞
and stores

(󰜚, 𝛽𝑃, 𝛽) in𝐻
4
-list. Condition 2: if 󰜚 ̸= 𝜃, 𝐵 sets𝑊 =

Φ = 𝐻
4
(󰜚) where Φ is randomly chosen in 𝐺

1
and

stores (󰜚, Φ) in𝐻
4
-list. However, if 󰜚 exists in𝐻

4
-list,

𝐵 gets its mapping value, 𝑊 = Φ or 𝛽𝑃. Finally, 𝐵
returns𝑊.

(iii) 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 query: 𝐵 constructs a list, 𝑝𝑘-list. When
𝐸
3
queries 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷

𝑖
) to 𝐵, 𝐵 looks up 𝑝𝑘-list.

If 𝐼𝐷
𝑖
is not found in 𝑝𝑘-list, 𝐵 does the following

works. 𝐵 computes 𝑃
𝑖
= 𝑥
𝑖
𝑃 where 𝑥

𝑖
is randomly

chosen in 𝑍∗
𝑞
. 𝐵 queries 𝐻

1
with 𝑃

𝑖
. If 𝐻
1
(𝑃
𝑖
) = 𝑎𝑃,

𝐵 returns “failure”; otherwise, 𝐵 stores (𝐼𝐷
𝑖
, 𝑃
𝑖
, 𝑥
𝑖
) in

𝑝𝑘-list. Besides, if 𝐼𝐷
𝑖
is found in 𝑝𝑘-list, 𝐵 gets 𝑃

𝑖

from 𝑝𝑘-list. Finally, 𝐵 returns 𝑃
𝑖
to 𝐸
3
.

(iv) 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦 query: when 𝐸
3

queries
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑖V𝑎𝑡𝑒 𝐾𝑒𝑦(𝐼𝐷

𝑖
, 𝑃
󸀠

𝑖
) to 𝐵, 𝐵 looks up 𝐻

0
-

list, 𝑝𝑘-list, and𝐻
1
-list. If 𝐼𝐷

𝑖
is not found in𝐻

0
-list,

𝐵 queries 𝐻
0
(𝐼𝐷
𝑖
) and gets 𝑘

𝑖
from 𝐻

0
-list; else,

𝐵 retrieves 𝑘
𝑖
from 𝐻

0
-list. If 𝐼𝐷

𝑖
is not found in

𝑝𝑘-list, 𝐵 queries 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 with 𝐼𝐷
𝑖
and obtains

𝑃
𝑖
from 𝑝𝑘-list; otherwise, 𝐵 catches 𝑃

𝑖
from 𝑝𝑘-list.

If 𝑃
𝑖
̸= 𝑃
󸀠

𝑖
, 𝐵 returns “failure.” Then, 𝐵 gets 𝜌

𝑖
from

𝐻
1
-list. Finally, 𝐵 returns (𝐷

𝑖0
= 𝑘
𝑖
𝑏𝑃,𝐷
𝑖1
= 𝜌
𝑖
𝑏𝑃).

(v) 𝐻
2
, 𝐻
3
, 𝑆𝑒𝑐𝑟𝑒𝑡 𝐾𝑒𝑦, and 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

queries are the same as those in the proof of
Theorem 12. Finally, 𝐸

3
outputs, with probability at

least 𝜀, a signature 𝜎∗ = (𝑉
∗
, 𝑈
∗

1
, 𝑈
∗

2
, 𝑃
∗

𝑦
) on a

message𝑚∗ for the user 𝐼𝐷
𝑦
such that

(1) 𝑉𝑒𝑟𝑖𝑓𝑦𝑖𝑛𝑔(𝜎∗, 𝑚∗, 𝐼𝐷
𝑦
, 𝑃
∗

𝑦
) = True;

(2) user 𝐼𝐷
𝑦
has been created;

(3) 𝑃∗
𝑦
is different from all of the public keys 𝑃∗

𝑦
’s

returned by 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦(𝐼𝐷
𝑦
) or used to query

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡.

From Lemma 9, we fork the sequence of signatures one
time and get 𝜎󸀠 = (𝑉󸀠, 𝑈󸀠

1
, 𝑈
󸀠

2
, 𝑃
∗

𝑦
) on 𝑚∗ by setting ℎ󸀠

2
̸= ℎ
∗

2
.

Thus, we obtain the following two equations:

𝑒 (𝑃, 𝑉
∗
) = 𝑒 (𝑇pub, 𝑈

∗

1
+ ℎ
∗

2
(𝑄
𝑦
+ Γ
𝑦
)) 𝑒 (𝑊,𝑈

∗

2
+ ℎ
∗

3
𝑃
∗

𝑦
)

𝑒 (𝑃, 𝑉
󸀠
) = 𝑒 (𝑇pub, 𝑈

󸀠

1
+ ℎ
󸀠

2
(𝑄
𝑦
+ Γ
𝑦
)) 𝑒 (𝑊,𝑈

󸀠

2
+ ℎ
󸀠

3
𝑃
∗

𝑦
)

(6)

with a probability at least 𝜀/2 by Lemma 10, where 𝑉∗ ̸= 𝑉
󸀠,

𝑈
∗

1
= 𝑈
󸀠

1
, ℎ∗
2
̸= ℎ
󸀠

2
, 𝑈∗
2
= 𝑈
󸀠

2
, and ℎ∗

3
= ℎ
󸀠

3
.

If𝐻
1
(𝑃
∗

𝑦
) = 𝑎𝑃, 𝐵 can get 𝑎𝑏𝑃 = (ℎ∗

2
− ℎ
󸀠

2
)
−1
(𝑉
∗
− 𝑉
󸀠
) −

𝑘
𝑦
𝑇pub and solve the CDH problem.
The success probability is 𝜀󸀠 ≥ 𝜀/(2𝑞

ℎ1−max) with the
computing time 𝑡󸀠 ≈ 𝑡+𝑞signO(𝑡sign)+𝑞𝑝𝑝𝑘O(𝑡𝑝𝑝𝑘)+𝑞𝑠𝑘O(𝑡𝑠𝑘)+
𝑞
𝑝𝑘𝑟

O(𝑡
𝑝𝑘𝑟
) + 𝑞
𝑝𝑘
O(𝑡
𝑝𝑘
) + 𝑞
ℎ0
O(𝑡
ℎ0
) + 𝑞
ℎ1
O(𝑡
ℎ1
) + 𝑞
ℎ2
O(𝑡
ℎ2
) +

𝑞
ℎ3
O(𝑡
ℎ3
) + 𝑞
ℎ4
O(𝑡
ℎ4
) + O(1).

By Theorem 14, a user cannot produce a signature with
a new public-secret key pair, which is different from his
own one, without the corresponding partial private key being
generated from the master secret key.Therefore, if there exist
two valid signatures of a user with different public key, the
user can prove to anyone that PKG is misbehaving, which
means that our scheme achieves Girault’s level-3 security.

5. Discussions

The comparisons between our scheme and [5, 7, 11, 13, 14, 16,
27–34] are shown in Table 1. Although our proposed scheme
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Table 1: The comparisons between [5, 7, 11, 13, 14, 16, 27–34] and our scheme.

Signing phase Verification phase Security level Formally proved Security model

[5] 𝑛𝑇
𝑠

2𝑛𝑇
𝑒
+ 2𝑛𝑇

𝑎
Girault’s level-3 Yes ROM

≈ 2400𝑛𝑡
𝑚

[7] 2𝑛𝑇
𝑠
+ 2𝑛𝑇

ℎ
+ 𝑛𝑇
𝑎

(2𝑛 + 1)𝑇
𝑝
+ 𝑛𝑇
𝑎

Girault’s level-2
Yes ROM+𝑛𝑇

𝑠
+ 2𝑛𝑇

ℎ

≈ (2475𝑛 + 1200)𝑡
𝑚

[27] 2𝑛𝑇
𝑠

2𝑇
𝑝
+ 3𝑛𝑇

𝑠
+ 𝑇
𝑎

Girault’s level-1 Yes ROM
≈ (87𝑛 + 480)𝑡

𝑚

[28] Cha-based 2𝑛𝑇
𝑠

2𝑇
𝑝
+ 2𝑛𝑇

𝑠
+ 𝑛𝑇
𝑎

Girault’s level-1 No ROM+𝑛𝑡
𝑚

≈ (59𝑛 + 480)𝑡
𝑚

[28] Waters-based (𝑧 + 2)𝑇
𝑠
+ (𝑧 + 1)𝑇

𝑎

3𝑇
𝑝
+ 2𝑛(𝑧 + 1)𝑇

𝑠

Girault’s level-1 No STD+𝑛(2𝑧 + 3)𝑇
𝑎

≈ (58𝑛(𝑧 + 1) + 720)𝑡
𝑚

[28] Hess-based 𝑛𝑇
𝑝
+ 3𝑛𝑇

𝑠
+ 𝑛𝑇
𝑎

2𝑇
𝑝
+ 3𝑛𝑇

𝑠

Girault’s level-1 No ROM+𝑛𝑡
𝑚

≈ (88𝑛 + 480)𝑡
𝑚

[29] Geng-based 3𝑛𝑇
𝑠
+ 𝑛𝑇
𝑎
+ 𝑛𝑡
𝑚

3𝑇
𝑝
+ 4𝑛𝑇

𝑠

Girault’s level-2 No ROM+(𝑛 − 1)𝑇
𝑎
+ 2𝑛𝑡
𝑚

≈ (118𝑛 + 720)𝑡
𝑚

[32] 2𝑛𝑇
𝑝
+ 11𝑛𝑇

𝑠
+ 4𝑛(𝑇

𝑎
+ 𝑡
𝑚
)

2𝑇
𝑝
+ 13𝑛𝑇

𝑠

Girault’s level-1 No ROM+8𝑇
𝑎

≈ (377𝑛 + 480)𝑡
𝑚

[11] 2𝑛𝑇
𝑠

(𝑛 + 1)𝑇
𝑝 Girault’s level-2 No —

≈ (1200𝑛 + 1200)𝑡
𝑚

[13] 𝑛𝑡
𝑒

(𝑛 + 1)𝑇
𝑒
+ 𝑛𝑡
𝑒 Girault’s level-3 Yes ROM

≈ (1200𝑛 + 1440)𝑡
𝑚

[30] (𝑘 + 4)𝑛𝑇
𝑠
+ (𝑘 + 2)𝑛𝑇

𝑎

5𝑇
𝑝
+ 4𝑛𝑇

𝑠

Girault’s level-1 No —+4(𝑛 − 1)𝑇
𝑎

≈ (116𝑛 + 1200)𝑡
𝑚

[14] 5𝑛𝑇
𝑠
+ 𝑛𝑇
𝑎

(𝑛 + 1)𝑇
𝑝
+ 3𝑛𝑇

𝑎
+ 2𝑛𝑇

𝑠 Girault’s level-2 Yes ROM
≈ (1258𝑛 + 1200)𝑡

𝑚

[33] 2𝑛𝑇
𝑝
+ 13𝑛𝑇

𝑠
+ 4𝑛𝑇

𝑎
+ 8𝑛𝑡
𝑚

2𝑇
𝑝
+ 14𝑛𝑇

𝑠

Girault’s level-1 No ROM+7𝑛𝑇
𝑎
+ 2𝑛𝑡
𝑚

≈ (408𝑛 + 480)𝑡
𝑚

[34] 2𝑛𝑇
𝑝
+ 10𝑛𝑇

𝑠
+ 6𝑛𝑇

𝑎
+ 7𝑛𝑡
𝑚

2𝑇
𝑝
+ 13𝑛𝑇

𝑠

Girault’s level-1 No —+𝑛(𝑇
𝑎
+ 𝑡
𝑚
)

≈ (378𝑛 + 480)𝑡
𝑚

[16] 3𝑛𝑡
𝑚
+ 5𝑛𝑡
𝑒

(3𝑛 + 1)𝑇
𝑝
+ 𝑛𝑡
𝑒 Girault’s level-2 Yes STD

≈ (3601𝑛 + 1200)𝑡
𝑚

[31] 𝑛(𝑇
𝑠
+ 𝑇
𝑎
)

3𝑇
𝑝
+ 𝑛𝑇
𝑠

Girault’s level-1 No —+𝑛𝑇
ℎ
+ 3𝑛𝑇

𝑎

≈ (52𝑛 + 720)𝑡
𝑚

Ours 4𝑛𝑇
𝑠
+ 𝑛𝑇
ℎ
+ 3𝑛𝑇

𝑎

3𝑇
𝑝
+ 3𝑛𝑇

𝑠

Girault’s level-3 Yes ROM+2𝑛𝑇
ℎ
+ 𝑛𝑇
𝑎

≈ (133𝑛 + 720)𝑡
𝑚

According to [41–43], 𝑇𝑝 ≈ 5𝑡𝑒, 𝑇𝑠 ≈ 29𝑡𝑚, 𝑇ℎ ≈ 23𝑡𝑚, 𝑇𝑎 ≈ 0.12𝑡𝑚, and 𝑡𝑒 ≈ 240𝑡𝑚.
𝑧: the number of ℓ-bit chunks in Waters scheme; 𝑘: the number of registered users in Qin scheme; 𝑛: the number of individual signatures; 𝑇𝑝: the time cost of
a pairing operation; 𝑇𝑠: the time cost of a scalar multiplication in 𝐺1; 𝑇ℎ: the time cost of a map-to-point hash operation; 𝑇𝑎: the time cost of a point addition
operation; 𝑡𝑚: the time cost of a modular multiplication in 𝑍𝑝; 𝑡ℎ: the time cost of a hash operation; ROM: random oracle model; STD: standard model.
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is not the most efficient, it satisfies the property of Girault’s
level-3 security with formal proofs.

6. Conclusions

In this paper, we have proposed a certificateless signature
scheme with fast batch verification and it satisfies Girault’s
level-3 security, where almost all existing signatures for batch
verification reach Girault’s level-1 security and only one
reaches Girault’s level-2 security. Finally, we have formally
demonstrated that the proposed scheme is unforgeable and
achievesGirault’s level-3 security based on theCDHproblem.
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